
NetWork - Redes Neuronales- Con dos Software - JASP y SPSS
La modalidad es mixta, es decir, se tendrán seis encuentros online (se graban) y se complementan con algunos vídeos logrados previamente para facilitar su estudio. De igual manera, se comparten presentaciones construidas para el presente curso online, artículos seleccionados y archivos PDF para complementar el estudio. Análisis de artìculos.
Curso Online NetWork - Redes Neuronales. – Vídeos MP4 -
Seis encuentros online por el aula virtual salaciemonline.myownmeeting.net/ todos ellos sábados a las 2:00 P.M hora de Colombia. Luego de cada sesión se envían los enlaces para que los puedan volver a observar y estudiar en su comodidad y en el horario que dispongan
El contenido tendrá dos grandes bloques o módulos: Network con SPSS y Network con JASP. Un módulo adicional inicial sobre conceptos básicos del tema, donde está inmerso y simbología. El SPSS se sub divide en dos: Perceptrón multicapa y de base radial.
1. Módulo Introducción a las Redes Neuronales. ¿Qué es una red neuronal?. Estructura de una red neuronal. Relación entre las redes neuronales artificiales y la inteligencia artificial.Lenguaje propio de las Network.
2. Módulo 2: Aplicaciones con JASP- Una alternativa del AFC con Network. Utilización del Bootstrapping–
3. Módulo 3.1: Redes perceptrón para predecir-3.2 Redes de base radial predicción. Aplicaciones de ambos tipos de red, comparación con procedimientos tradicionales.
Contenido
Modulo 1: Conceptos básicos sobre REDES NEURONALES E INTELIGENCIA ARTIFICIAL.
Pautas generales del curso compartir bases de datos, metodología, fortalecimiento de algunos menús básicos del programa JASP.Introducción a Machine Learning, métodos supervisados y no supervisados, lenguaje técnico.
Modulo 2: Network con JASP.
Se utilizan para modelar interacciones entre un gran número de variables. En lugar de intentar reducir la estructura de las variables a su información compartida, como se hace en el modelado de variables latentes, estimamos la relación entre todas las variables directamente. Aplicación del AFC.
Modulo 3:
3.1 Perceptrón multicapa:
El procedimiento Perceptrón multicapa (MLP) genera un modelo predictivo para una o más variables dependientes (de destino) basada en los valores de las variables predictoras.
«Variables dependientes. Las variables dependientes pueden ser:
- Nominal. cuando sus valores representan categorías que no obedecen a una clasificación intrínseca.
- Ordinal. cuando sus valores representan categorías con alguna clasificación intrínseca.
- Escalas. (continua) cuando sus valores representan categorías ordenadas con una métrica con significado, por lo que son adecuadas las comparaciones de distancia entre valores. Son ejemplos de variables de escala: la edad en años, ingresos».
El procedimiento Función de base radial (RBF) genera un modelo predictivo para una o más variables dependientes (de destino) basado en los valores de las variables predictoras. Las variables dependientes puedn ser como en el caso anterior nominal, ordinal o escala)-
La inversión es de 150 dólares fuera de Colombia, en el país es de 485.000. Se pueden cancelar por Western Unión y Paypal desde el exterior y en Bancolombia en el país cuenta de ahorro 61463568030 a nombre del tutor León Darío Bello Parias.
El tutor León Darío Bello Parias estadístico y docente investigador con más de 34 años de experiencia y asesor de múltiples trabajos de investigación y acompañamiento en tesis y publicación de artículos.



Bancolombia cuenta de ahorros 61463568030. Nombre del tutor León Darío Bello Parias.
Contacto
WhatsApp + 57 316 575 9247
Correo asesor@leondariobello.co Ldbello753@gmail.com
WhatsApp + 57 316 575 9247
Correo ciemvirtual@gmail.com